EVALUATING THE EFFECT OF APPLYING THE FDA DEFINITION OF WHOLE GRAINS TO HEALTH CLAIMS FOR RISK REDUCTION OF CARDIOVASCULAR DISEASE AND DIABETES
Fabiana F. De Moura1, Kara D. Lewis1, Julie Mares2, Judith Marlett3, Harry Sapirstein4, James Hoadley5, Michael C. Falk1
1The Life Sciences Research Office, Bethesda, MD. 2Ophthalmology and Visual Sciences and 3Professor Emeritus, University of Wisconsin-Madison, Madison, WI. 4Food Science, University of Manitoba, Winnipeg, MB, Canada. 5Consultant, Shepherdstown, WV

ABSTRACT
The U.S. Food and Drug Administration (FDA) defines whole grains as consisting of the intact, ground, cracked or flaked fruit of the grains whose principal components—the starchy endosperm, germ and bran—are present in the same relative proportions as they exist in the intact grain. The Life Sciences Research Office (LSRO) evaluated the effect of applying the FDA definition of whole grains on the strength of scientific evidence in support of claims for risk reduction of cardiovascular disease (CVD) and diabetes. We concluded that using the FDA definition for whole grains as a selection criterion is limiting because of the majority of existing studies often use a broader meaning to define whole grains. When we considered only whole grain studies that met the FDA definition, we found insufficient scientific evidence to support a claim that whole grain intake reduces the risk of CVD. However, a whole grain and CVD health claim is supported when using a broader concept of whole grain to include studies that included intake of bran and germ as well as whole grains. The scientific evidence on the relationship of whole grain consumption and diabetes is suggestive but inconclusive whether or not the definition of whole grains was in accordance with that of the FDA. This type of analysis is complicated by variation among different types of whole grains due to their diversity in nutrients and bioactive components. This project was sponsored by Kellogg Company, USA.

LSRO STUDY OBJECTIVES
LSRO conducted an independent review of the scientific literature to evaluate the effect of applying the FDA definition of whole grains on the strength of scientific evidence in support of whole grains health claims for risk reduction of CVD and diabetes. This project was undertaken in consultation with an independent Expert Panel that was composed of scientific experts in the fields of epidemiology, nutrition, cereal chemistry, and food regulation.

LSRO STUDY APPROACH
LSRO conducted a literature search at MEDLINE for articles published through February, 2008. Keywords used were: (whole grain OR whole grains) AND (cardiovascular disease OR heart OR coronary heart disease OR stroke OR blood pressure OR myocardial infarction OR heart OR diabetes). The inclusion criteria were derived from the specifications of the FDA guidelines for studies eligible to establish a health claim (U.S. Food and Drug Administration, 2007):

• Human intervention and observational studies;
• Studies that measured a validated endpoint or a surrogate endpoint for CVD and/or diabetes;
• Healthy US population and population representative of the U.S.

We first evaluated only studies that meet the FDA definition of whole grain (FDA definition approach). Later, we expanded our analysis to include additional studies that were conducted with whole grains but were not defined according to the FDA specifications or included bran or fiber (Expanded approach).

BACKGROUND
A whole cereal grain is the fruit (also known as the seed, caryopsis, or kernel) of plants belonging to the Poaceae (or Gramineae) family. Some examples of cereal grains are wheat, rice, barley, corn, rye, oats, millets, sorghum, teff, triticale, canary seed, Job’s tears, fonio, and wild rice. Although all grains contain three anatomical parts (endosperm, bran, and germ) there is great variability among the whole grains in their content of macronutrients, micronutrients and bioactive components.

Diversity of Whole Grain Composition

Whole Grain Health Claims
Health claims for food labels are authorized in the U.S. by two amendments to the Federal Food, Drug and Cosmetic Act: the Nutrition Labeling and Education Act of 1990 (NLEA) and the Food and Drug Administration Modernization Act (FDAMA) of 1997. A FDAMA health claim addressing whole grains has been authorized by the FDA based on the following authoritative statement from the National Academy of Sciences (NAS) report:

“Diets high in plant foods—i.e., fruits, vegetables, legumes, and whole grain cereals—are associated with lower occurrence of CHD and cancers of the lung, colon, esophagus, and stomach.”

At present, there are no health claims that relate grain products to diabetes.

RESULTS
Five studies conformed to the FDA definition of whole grains. There was insufficient evidence to draw a firm conclusion about the effect of whole grain intake on the risk of CVD or diabetes when only these five studies were considered.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Design</th>
<th>Country</th>
<th>Gender</th>
<th>Age</th>
<th>Number of Subjects</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al. 2007</td>
<td>Randomized crossover</td>
<td>US</td>
<td>Male</td>
<td>59 ± 5</td>
<td>238 CVD</td>
<td>Whole grain intake (121 g/day) vs 0 g/day; CVD: RR=0.82 (95% CI: 0.70-0.96; P for trend = 0.01); whole grain intake 42.2 vs 3.5 g/d, 18/13 HOMA-IR: Homeostasis model assessment for insulin resistance; TC: total cholesterol; TG: total triglycerides.</td>
</tr>
<tr>
<td>Bove et al. 2007</td>
<td>Randomized crossover</td>
<td>Germany</td>
<td>Female</td>
<td>51 ± 13</td>
<td>18/13 HOMA-IR: Homeostasis model assessment for insulin resistance; TC: total cholesterol; TG: total triglycerides.</td>
<td></td>
</tr>
<tr>
<td>Jensen et al. 2006</td>
<td>Prospective Cohort</td>
<td>US</td>
<td>M</td>
<td>40-74</td>
<td>42,650 CVD: RR=0.68 (95% CI: 0.57-0.81; P for trend = 0.02); whole grain intake 43.8 vs 8.2 g/d, 3.5 ± 2.8 µU/mL x mmol/L) both p < 0.05</td>
<td></td>
</tr>
<tr>
<td>DeMunter et al. 2007</td>
<td>Randomized crossover</td>
<td>US</td>
<td>F</td>
<td>20-45</td>
<td>48,410 Diabetes: RR=0.69 (95% CI: 0.57-0.81; P for trend = 0.01) whole grain intake 31.2 vs 3.7 g/d, 3.5 ± 2.8 µU/mL x mmol/L both p < 0.05</td>
<td></td>
</tr>
</tbody>
</table>

When we expanded our analysis to include studies that were not restricted to the FDA definition of whole grains, the studies considered were as follows:

• CVD: 29 (15 intervention and 14 observational) studies. Intervention studies generally reported a beneficial effect and all 14 observational studies suggested a protective association between whole grain consumption and risk of CVD.

• Diabetes: 21 (10 intervention and 11 observational) studies. Results from intervention and observational studies were suggestive but inconclusive for the association between whole grain intake and risk of diabetes.

CONCLUSIONS

• Using the FDA definition for whole grains as a selection criterion is limiting. This is because a consistent definition of whole grains has not been applied in existing research about risk of CVD and diabetes. As such, drawing specific conclusions on benefits of "whole grains" in general from the body of scientific evidence is confounded, typically with bran/dietary fiber.

• Whole grain consumption and CVD: there is no consistent scientific evidence to support a whole grain and CVD risk health claim if only whole grains studies that conform to the FDA whole grain definition are considered. However, a whole grain and CVD health claim is supported using a broader concept of whole grains, to include products with 25% bran content which was a commonly used definition in the observational research.

• Whole grain consumption and Diabetes: the association is suggestive but inconclusive whether the analysis was restricted to studies that defined whole grain according to the FDA definition, or included studies using a wider classification of whole grains.

• Because whole grains differ in their type and amount of nutrients and bioactive components, the health benefits observed from consumption of one whole grain do not necessarily reflect the same type or magnitude of benefit from other whole grains.

About LSRO: History and Mission
Since 1962, the Life Sciences Research Office (LSRO) in Bethesda, MD has provided clients with expert evaluation of issues, opportunities, data, programs, and proposals in basic and clinical research. LSRO has carefully built an international reputation for objectivity and is regarded as a widely accepted authoritative source, independent from special interest groups and politics. LSRO reports are transparent, comprehensive, state-of-the-science reviews. Moreover, LSRO’s experience with regulatory and governmental processes has proven useful to clients from the public and private sector alike. For more information, please refer to www.LSRO.org.