Nonclinical Safety Evaluation of Inhalation Drug Products

February 13, 2002
Life Science Research Organization
Bethesda, Maryland

Luqi Pei, Ph.D.
Division of Pulmonary and Allergy Drug Products
Center for Drug Evaluation and Research
Food and Drug Administration
Disclaimer

Information presented here represents the speaker’s interpretation and opinion of the current rules, regulations and practices at the FDA only. It does not represent the Agency’s position on any subjects discussed.
Overview

• Introduction
• Toxicology
• Pharmacology
• Inhalation toxicity studies
Introduction to Inhalation Drug Products

Inhalation Drug Products:
- Inhalation: an increasingly popular route of drug delivery
- Indicated for:
 - Diseases of the respiratory system
 - Other systems (e.g. insulin for diabetes)
- Using devices: metered-dose inhalers, dry powder inhalers, and nebulizers
- Safety evaluation consists of:
 - Clinical
 - Nonclinical
 - Manufacturing controls
Scope of Nonclinical Program

- **Toxicology**
 - General toxicity
 - Genetic toxicity
 - Carcinogenicity
 - Reproduction and developmental toxicity
 - Special toxicity
 - Toxicokinetics

- **Pharmacology**
 - Pharmacodynamics
 - Safety pharmacology
 - Pharmacokinetics

- **Compounds of Interest**
 - Active ingredients
 - Excipients
 - Formulation
 - Interaction of mixtures
 - Impurities, degradation products, extracables and leachables
Regulatory Guidelines for the Nonclinical Safety Evaluation of Inhalation Drug Products

• Considerations for Toxicology Studies of Respiratory Drug Products.
 – DeGoerge et al., Regul Toxicol Pharmacol, 1997;25:189-193

• ICH guidelines:

• FDA guidelines (ICH guidelines plus documents listed in the following site):
 – http://www.fda.gov/cder/guidance/index.htm - Pharm/Tox
II. Toxicology

1. General Toxicity Studies

• Guidance
 – (ICH) S3B: Pharmacokinetics: Guidance for Repeat-Dose Tissue Distribution Studies
 – (ICH) S4A: Duration of Chronic Toxicity Testing in Animals (Rodent and Non-rodent Toxicity Testing)

• Studies:
 – Include at least two species (≥ 1 non-rodent species)
 – Use inhalation (IH) route of administration or IH + non-IH
 – Expose animals daily
 – Treatment duration is up to
 • Six months in rodents
 • One year in non-rodents
 – Evaluate both local and systemic toxicities
2. Genetic Toxicity Studies

• Guidance
 – S2A: Specific Aspects of Regulatory Genotoxicity Testing for Pharmaceuticals
 – S2B: Genotoxicity: A standard Battery for Genotoxicity Testing for Pharmaceuticals

• Program
 – Three tests suffice if they give no signal of concern
 • Bacterial mutagenicity test
 • \textit{in vitro} chromosomal aberration test
 • \textit{in vivo} chromosomal aberration test
 – More tests may be recommended otherwise
3. Carcinogenicity Studies

- **Guidance (ICH):**
 - S1A: The Need for Long Term Rodent Carcinogenicity Testing of Pharmaceuticals
 - S1B: Testing for Carcinogenicity of Pharmaceuticals
 - S1C: Dose Selection for Carcinogenicity Studies of Pharmaceuticals
 - S1C(R): Guidance on Dose Selection for Carcinogenicity Studies of Pharmaceuticals

- **Program**
 - Bioassays in 2 species
 - Protocols subjected to FDA’s review and approval
4. Reproductive & Developmental Toxicity Studies

• **Guidance**
 - (ICH) S5A: Detection of Toxicity to Reproduction for Medicinal Products
 - (ICH) S5B: Detection of Toxicity to Reproduction for Medicinal Products: Addendum on toxicity to Male Fertility
 - (FDA): Nonclinical Safety Evaluation of Pediatric Drug Products

• **Non-inhalation route of administration may be acceptable**

• **Use inhalation exposure for juvenile animal studies**
5. Special Toxicity Studies

- Tissue irritability/compatibility
- Respiratory hypersensitivity
- Immunotoxicity
- Others
6. Toxicokinetics Studies

• Component (usually) of toxicity studies
• Monitor plasma levels and AUCs of the drug and its metabolites
• Evaluate both dose proportionality and temporal effects of exposure
• Guidelines
 – (ICH)S3A: Toxicokinetics: The Assessment of Systemic Exposure in Toxicity Studies
III. Pharmacology

- **Pharmacodynamics**
 - Receptor binding and activation
 - Enzyme inhibition and activation
 - Mechanism of drug action
 - Efficacy studies
 - *in vitro*
 - *In vivo*
 - Drug interactions

- **Safety pharmacology**

- **Pharmacokinetics (ADME)**
IV. Abbreviated Nonclinical Program

• Consists of only parts of the above nonclinical program

• Is applicable to:
 – New drugs with short-term clinical use
 – Well-known drugs or excipients when:
 • Reformulation
 • New route of administration
V. Inhalation Toxicity Studies

- Should be in compliance with GLP regulations
- Have five steps process
 - Protocol development
 - Conducting the study
 - Protocol amendments
 - Drafting study report
 - Auditing and finalizing the report
Exposure System of Inhalation Toxicity Studies
Characteristics of Inhalation Toxicity Studies

• Design
 – Modes of Exposure
 • Nose-only
 • Oral inhalation
 – Needing controls and treated animals

• Dosimetry

• Toxicological Evaluation
 – Systemic toxicity: similar to other studies
 – Local toxicity: more detailed evaluations
Inhalation Toxicity Studies - Design

• Have Generally five groups
 – Sham control (air, or saline)
 – Vehicle control
 – Testing Groups
 • Low dose
 • Mid dose
 • High dose
• Include Both sexes / treatment
• Use extra animals /dose for TK (rats, mice)
Samples of Inhalation Exposure Chambers in Toxicity Studies
Dosimetry of Inhalation Toxicity Studies

- Is a theoretical estimate

- Varies with mode of exposure, particles size, species and anatomic location (indications)
 - Local drug depositions / concentrations
 - Plasma drug levels

- Needs stringent quality controls
Deposition of Nasally Inhaled Aerosol Particle in Humans
Effect of Species and Mode of Exposure on Pulmonary Drug Deposition
Exposure Assessment

Dose (mg/kg/day) = \(\frac{C \times T \times M \times F}{W} \)

Where:
- \(C \) = Aerosol drug concentration (mg/L)
- \(T \) = Duration of exposure (min/day)
- \(M \) = Minute volume (L/min)
- \(F \) = Deposition factor
- \(W \) = Body weight (kg)
Endpoints for Toxicological Evaluation

- Dosimetry
- Systemic toxicity
- Local toxicity
Dosimetry Evaluation

- Characterization of the exposure system
- Particle size distribution
- Dosing variations
- Deposition factor used
- Dose estimates
Endpoints for Evaluating Systemic Toxicity

- Clinical observations
 - Mortality
 - Food and water consumption
 - Body weights and body weight gains
 - Any abnormal signs and behavior
 - Ophthalmology
 - EKG and other evaluations

- Clinical pathology
 - Hematology
 - Serum chemistry
 - Urinalysis

- Necropsy
- Histopathological examinations
Endpoints for Evaluating Local Toxicity

• Functional changes
 – Plethysmography
 – Lung mechanics
 – Gas diffusing efficiency

• Biochemistry changes

• Morphological changes
 – Non-neoplastic changes
 – Neoplastic changes
Summary

The nonclinical safety evaluation of inhalation drug products:

- Is a part of the overall safety evaluation that:
 - Also includes clinical and CMC disciplines
 - Incorporates risk/benefit analysis
- Consists of toxicology, pharmacology, and pharmacokinetics
- Includes the evaluation of the formulation and its components
- Needs inhalation toxicity studies that
 - Examine local and systemic toxicities of the drug
 - Tend to have large variations in their dose estimates
 - Have body burden estimates based on indications
- Varies with drugs and their indications in nonclinical requirements
Clinical Considerations for Inhalation Toxicities

- **Short-term considerations (tolerability)**
- **Done immediately post-first exposure(s):**
 - Tolerability in Normals first
 - Testing in vulnerable populations (e.g., asthmatics)
 - Assessed by AEs, Serial Spirometry (+/- oximetry)
 - Applies for new drug substance and/or novel excipient
Clinical Considerations for Inhalation Toxicities

• Long-term considerations (pulmonary safety)
 – Work-up / testing level and duration partly depends on pre-clinical toxicology work/expectations
 – “Complete” work-up could include:
 • Full Pulmonary Function Testing (including lung volumes, diffusion capacity, +/- Pulmonary Exercise Testing, +/- methacholine challenge)
 • Radiography (most sensitive assessment is with high-resolution CT scanning)
 • Pulmonary Adverse Events, examination, ...
Clinical Considerations for Inhalation Toxicities

• Long-term considerations (pulmonary safety)
 – Duration of testing dependant on expected duration of exposure
 – If chronic and/or episodic but likely frequently recurrent
 • >= 1 year of testing is expected
 – Likely limited exposures would require less exposure duration
 – “N” - ICH for New Molecular Entity - 1500 total exposures, 300 patients for 6 months, 100 for 1 year (similar target for important new excipient by inhalation not unreasonable)