PREPS and the smaller tobacco companies

John H. Lauterbach, Ph.D., DABT
Lauterbach & Associates, LLC
April 2005
Who we are

- Lauterbach & Associates, LLC, is a consulting firm that specializes in providing contract scientific affairs and regulatory support to the tobacco industry.

- Principals in the firm are:
 - John H. Lauterbach, Ph.D., DABT
 - Theresa D. Lupcho, Psy.D.

- Firm started 10/2004 when JHL retired from the Brown & Williamson Tobacco R&D
Disclaimers

- The views in this presentation are solely those of Lauterbach & Associates, LLC
- This presentation as well as our attendance at this meeting have been financed solely by Lauterbach & Associates, LLC
- The contents of this presentation have not been discussed with and/or shown to past, current, and/or prospective clients of Lauterbach & Associates, LLC
Background

- IOM report, “Clearing the Smoke” set forth desirability, feasibility, and potential problems associated with PREPS
- PREPS introduced into the marketplace to date have not met with wide acceptance
- A PREP must be acceptable to adult smokers
 - If not, many will continue to smoke conventional products – no health benefit
 - Small companies may be better able to meet this need – potential health benefit
Why small companies may do it better?

- A PREP successful in the marketplace will likely be similar to conventional products.
- Such a PREP will likely involve innovative technologies and/or innovative combinations of existing technologies.
- Such innovations may come from start-ups:
 - Small size -- entrepreneurial spirit
 - No ties to pre-existing processes and products
 - Requirements for commercial success may be much lower than for larger companies.
Potential issues with start-up companies

- Potential limitations on resources needed to commercialize developments
 - Limited time
 - Limited funds
 - Limited personnel to manage extensive studies

However, the need to show effectiveness remains; but, how many tests and/or assays are *really* necessary?

- An efficient, effective process benefits all
Can we use smoke chemistry to show reductions in components thought to be responsible for smoking-related diseases?

- Can we use chemistry to demonstrate specific reductions that are relatively independent of puffing conditions?
- This is different than “low-tar” where essentially overall deliveries rather than specific deliveries were reduced under FTC/ISO conditions
- Chemistry almost always first step in an assessment; if anticipated effects not seen, no point in going further
What do we mean by smoke chemistry?

- Mainstream Hoffman analytes with caveats:
 - Expanded list with particular focus on smoke components of concern including free radicals
 - Smoke collection conditions that represent range of expected puffing conditions
 - Accredited facilities and staff

- Other mainstream components as deemed necessary because of novel tobacco additives and/or cigarette design
Components thought to be associated with smoking-related diseases:

Cancer endpoints

- Hecht (1999) weight-of-evidence approach
 TSNAs ≈ specific PAHs >> metals, free radicals/oxidative damage, misc. organics

- Haussmann et al. (2001) risk-assessment approach
 1,3-butadiene, acetaldehyde, acrylonitrile, benzene

- Pryor (1997) free radicals
Specific components in smoke – 2

- **Non-cancer endpoints**
 - Haussmann *et al.* (2001) risk-assessment approach
 - acrolein, acetaldehyde
 - Pryor (1990) free radicals

- **Other components of potential concern**
 - carbon monoxide, nitrogen oxides
 - aromatic amines, heterocyclic aromatic amines
 - diacetyl and other dicarbonyls
Dealing with smoke chemistry data

- Is a product a PREP if it has “better” smoke chemistry results than a conventional product of “equal” delivery?
 - Under what smoking conditions?
 - How much “better” is enough?

- Is a product a PREP if it has “better” smoke chemistry results than a known PREP of “equal” delivery under the same smoking conditions?
If chemistry not enough, what else?

- Smoking behavior and usage
 - Will studies based on the filter analysis method (St. Charles et al., 2004) be sufficient?
 - Method estimates nicotine delivered to smoker and number of cigarettes consumed and butt length
 - Method well correlated with urinary biomarkers of nicotine uptake

- Changes in uptake of smoke components
 - Will biomonitoring studies be needed?
 - Possibly only if assessment of design and ingredients indicates potential for unexpected changes in uptake
Conclusions – 1

- The best technology should be available for PREPS
 - Smaller companies may be more effective in bringing needed technologies to market
 - Requirements for PREP status must be effective but not so burdensome that it stifles technology
 - Focus should be on reductions of components of concern that can be achieved over a range of puffing conditions
 - An efficient, effective assessment process benefits all
Smoke chemistry can be used to determine levels of components of concern under several different puffing conditions

- If results are less than equal to a known PREP is the proposed PREP also a PREP?
- How much of a reduction versus conventional product is enough?

Answers to such questions may have to come from group making the assessments
Conclusions – 3

- Intake and other measures of consumption can be obtained from the filter analysis method.
- Whether or not additional chemical or biological tests are needed may depend on ingredients and/or construction materials.
References cited in presentation

